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This paper shows & procedure that was used to
find the differential phase shift between the two
orthogonal Tll’o modes that synthesize an ellipti-
cally polarized wave in a modified square waveguide
by deriving simple algebraic expressions for the
cut-off wavelengths of the two modes. The results
achieved indicate that the approximations caused
less than 1.5 percent error over the applicable

.range of interest.
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A SIMPLE METHOD FOR DESIGNING
AN ELLIPTICAL POLARIZER IN SQUARE WAVEGUIDE

It is generally known that a square waveguide can propagate an elliptically
polarized wave and that this wave can be analyzed as two spatially orthogonal
‘I'El,o modes.(l)

A common problem is to transform a single TEl’o mode into an elliptically
polarized mode. A device that does this is called an elliptical polarizer. Ome
possible approach for constructing an elliptical polarizer is a square waveguide

in which tvo diagonally opposite corners have been cut off.

m

Figure 1
Electric Field Vector Incident on & Modified Square Waveguide
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A wvave in the ‘1‘!1’0 mode incident upon the polarizer as shown in Fig. 1
can be considered to be made up of two components, one having its electric
field, E, parallel to the cut corners (as in Fig. 2a), and the other having
1ts electric field, E;, perpendicular to the cut corners (Pig. 24).

The phase velocity of each orientation or mode is different because the
boundary conditions are gecmetrically different. Therefore, a difference in
phase will result as the two modes travel through the polarizer.

As an example, a circular polarizer can be made by adjusting the height
and length of the corner ridges to give a 90° difference in phase between the
two components over the length of the polarized section. To accomplish this,
the cut-off wavelengths of the two modes must be known in the region of the
modified corners.

The cut-off wavelengths can be determined by using a calculus of varia-
tions technique.(a) This paper will demonstrate a less formidable approach -
that gives very simple algebraic formulas, usable with negligible error for

most design problems.
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Consider the solution for the E / mode indicated in Fig. 2a. The fields of
this mode will be undisturbed by an electric wall passed corner to corner and
perpendicular to the electric field lines. 8imilarly, a magnetic wall can be
placed through the other two corners parallel to the electric field. It 1is
then necessary to consider only that triangular portion of the original square
waveguide bounded by the clectric wall, the magnetic wall, and one of the ini-
tial walls.

One of these triangular sections is shown in Fig. 2b. Because 1its fields
and geometry are identical with those in the waveguide of Fig. 2a, it will
therefore have the same cut-off wavelength.

The larger square waveguide of Fig. 2c, shown propagating the ml,l mode,
has the same cut-off wavelength as does the small triangular waveguide of
Fig. 2b. This can be seen by observing that magnetic walls can be passed
center to center through opposite walls of the waveguide in Fig. 2c¢c, and that
electric walls may be placed corner to corner vithout_ disturbing the fields of
the 'ml,l mode. When that has been done, the fields within a trjangular section
formed by a magnetic wall, an electric wall, and part of the original waveguide
wall, will be identical with those of the small triangular section of Fig. 2b
(vhich was itself derived from the E // mode of Fig. 2a). Therefore, the cut-
off wavelength of the E// mode in Fig. 2a is the same as that of the ml,l mode
of Fig. 2c. Also, the two cut corners shown in Fig. 2a correspond to the four
square bars pictured in Fig. 2c. The effect of these bars upon the cut-off
wavelength will be determined by perturbation theory.

Perturbation theory deals with “*he change in the resonant frequency of a
cavity that has had a small volumetric change. It may be said that the cut-off

frequency is of interest here and not the resonant frequency. However, if the_

wvaveguide is operated at its cut-off frequency, it is possible to make use of



the fact that the waveguide is in resonance, and therefore its cut~off fre-
quency and resonant frequency become synonymous.

Reasoning similar to that used above holds for the E.L mode of Fig. 24, but
now the cut corners correspond to a single bar placed axially in the larger
waveguide carrying the '1'!1,1 mode.

Consider now a unit length of the waveguide of Fig. 2c, supporting the
ml,l mode at its cut-off frequency, to be a resomtor‘. Then, the change in

resonant frequency, Af, arising from the perturbation caused by the four bare,

can be obtained by rewriting Slater's perturbation theorenm, (3) as

o, — AU,
~E___H (1)

eu o

o|R

The unperturbed resonant frequency is f o’ AUE and AUH are the peak electric and
magnetic energies over the perturbation, respectively, and Uo is the total stored-

energy in the resonant structure. In the region of the perturbing rods,

AUH >»> AHE.

an, = 3l |?av, (2)

H

vhere AV is the perturbing volume. With the proper choice of origin,

nx

B = Bcos () cos (B, (3)
a2 a2

vhere the quantity B is an arbitrary constant. If AV is small, then Hz will be

fairly constant in that region and AUH can be approximated by evaluating Hz at

the point,

x"Y"g‘) ()

ag =-2 B [1 - (;_,‘-})2] . (5)
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The total energy stored at resonance can be found from the peak magnetic field,

U, = %—uf T le|2 dxdy = %@2&2. (6)

Note that the energies are evaluated per unit length in the axial direction.
This is poseible because at cut-off the fields in the axial direction remain

constant. Using Equations (1) through (6),

af b2 2

£ - @] . 0
Also,

of AN

i ©

where AN is defined as,
A)v = ()‘C)E// - Ao . (9)
The quantity (xc )E is the cut-off wavelength of the perturbed TE, , mode and
)
therefore also of the E Y mode; xo is the cut-off wavelength of the unperturbed

TE, , mode, and in a square waveguide a2 on a side,

1,1

A, = 2a. (10)

Using Equations (7) through (10), the cut-off wavelength of the E )/ mode of

Fig. 2a beccmes,

(A )g

=L @ 1- u(‘a—’)2 + xa(:-’)l‘ ) (11)

A graph of Equation (11) appears in Fig. 3.



The solution for the cut-off wavelength of the !.L mode of Fig. 24 is

similar to that for the B / mode. However, it must be remembered that now the

perturbing volume is one axial bar, as shown in Fig. 2f, instead of the four

corner bars used in the E // calculations. Also, Al.lE >> Al.; and,

H
AU = -%e[;i+E:]Av, (12)
where
E, = thgé B cos (:iﬁ) sin (ﬁ) . (13)

The quantity AUE can be approximated by evaluating Ex and Ey at the point

X = y = ‘-:% -2 . (1)
At this point,

E, = -E. (15)
Using Equations (12) through (15),

any = - g us? (B (16)

and, from Equations (1), (6), and (16),

2 .4
at b
r -FQ - (27)

Substitution into Equations (7) through (9) leads then to the cut-off wavelength

of the EJ_ mode,

(A )g 2 4
- 1R D). (18)
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A plot of Equation (18) appears in Fig. 3.

Equations (1.) and (18) agree very well with results obtained by applying
calculus of variations to the problem. The results from the analysis used here
have léss than 1.5 percent error for (AC)E_ in the region 0 < 2 < 0.36, and
less than 0.75 percent for (xc )E over the same region. The approximation for
E

R
E / falls off rapidly after that, having 6.6 percent error at (b/a) = O.4. How-

is fairly good in the range beyond (b/a) = 0.36, but the approximetion for

ever, a larger value of (b/a) would be undesirable for most applications, because
such a large change in waveguide shape would give impedance matching problems and
tend to generate and propagate higher order modes.

Since this device will function as a polarizer, the difference in phase be-
tween the two orthogonal modes, E // and EJ_ , over & length, £, of a square wave-
guide with triangular corner sections is of importance, and will be called the

differential phase shift, 6_.

b
6, = 6, - 6 =ong|— - |, (19)
D /A s [xg// XG.L‘J

vhere the phase shifts, 6, and €, , and the guide wavelengths, A and A,
// L g €

refer respectively to the E, and E, modes. A plot of Eq. (19), the differential
/

L
phase shift, as applied to the flat ridge section appears in Fig. 4. In Figs.
4 and 5 the quantity a (voltage attenuation in nepers per meter) having a non-
zero value simply shows that one of the modes has reached a cut-off condition.
The construction of this device in practice necessitates the addition of
tapers to each end of the triangular ridge sections to provide an acceptable
impedance match. It therefore becomes important to know how much phase shift
these tapers will add in addition to that of the flat corner sections. This can

be determined experimentelly by choosing a reasonable length for a set of tapers
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Fig, 4, Normalized differential Phase shift for a set of flat ridge sections.
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and building a model so that the total differential phase shift of the device
can be measured. The differential phase shift of the tapers can then be found
by subtracting the phase shift of the middle untapered section, as computed
from Eq. (19), from the total measured differential phase shift.

It is then possible to construct a polarizer wifh any desired amount of
rhase shift using the tapers just measured and a new middle untapered section
designed from Eq. (19) to provide the remainder of the required phase shift.

The exact phase shift of the tapered sections can be expressed mathemati-
cally by considering the following analysis for linear tapers.

In Eqs. (11) and (18), if the quantity, b, is replaced by the quantity
(bx/L), where x is now the length parameter that is variable, and L is the
length of the tapers, the cut-off wavelengths of the two modes, E / and E, , as

4
a function of the position along the tapers, x, become

-

- o | bx\2 2,bx b
("c)z// 2 2a l_l "‘(E) + (;f) ] , (20)
and
) = 231+ ﬁ (9’-‘-)1‘
¢ E.L 2 ‘al )
The total phase shift for each orientation is then
L
A 2
oy = i—" I 1-[ 2 ax, (22)
° ° ‘Lzs[l — (252, BEE)
alL al
and

» 2n f L= Yo
5 = X Y, Z 3 ax. (23)
af1e - @ ] '

11



)

iy
L

—0,(2

NORMAL(ZED OIFFERENTIAL PHASE SHIFT,

0.04

0.02

12



The integration of Equations (22) and (23) was performed numerically by
computer techniques. The results obtuined' for the total differential phase
shift, OD, for a set of linear tapers of length, L, are plotted in ¥Fig. 5.

Lastly, it must be noted that Figs. 4 and 5 do not take into account a
small additional phase shift resulting from the change in waveguide impedance _
through the phase shifter. Therefore, using Figs. 4 and 5, one can completely
design a phase shifter that will yield a result very close but not exactly

equal to the predicted wvalues.
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